Code: CE1T1, ME1T1, CS1T1, IT1T1, EE1T1, EC1T1, AE1T1

I B. Tech - I Semester - Regular / Supplementary Examinations November 2017

ENGINEERING MATHEMATICS - I
 (Common for all Branches)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks

$$
11 \times 2=22 \mathrm{M}
$$

1.

a) Solve $\left(x^{2}-a y\right) d x=\left(a x-y^{2}\right) d y$.
b) State Newton's law of cooling.
c) Express e^{x} as powers of x.
d) State Rolle's theorem.
e) Find the particular integral of $\left(D^{2}-1\right) y=e^{2 x}$.
$1 \sqrt{x}$
f) Evaluate $\int_{0} \int_{x}\left(x^{2}+y^{2}\right) d y d x$.
g) Show that divr $=3$
h) Show that $\operatorname{curl}(\operatorname{grad} \varphi)=\overline{0}$.
i) Using Green's theorem, find the area of the ellipse

$$
x=a \cos \theta, y=b \sin \theta, 0 \leq \theta \leq 2 \pi .
$$

j) Write the normal equations of a straight line $y=a x+b$.
k) Calculate $\Gamma\left(-\frac{3}{2}\right)$.
PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2.a) Show that the family of con-focal conics $\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1$ is selforthogonal. Where λ is parameter.
b) Solve: $\left(D^{2}-2 D+1\right) y=x e^{x} \sin x$.

8 M
3.a) Using Lagrange's mean value theorem, prove that
$\frac{b-a}{1+b^{2}}<\tan ^{-1} b-\tan ^{-1} a<\frac{b-a}{1+a^{2}}$.
Hence deduce that $\frac{\pi}{4}+\frac{3}{25}<\tan ^{-1} \frac{4}{3}<\frac{\pi}{4}+\frac{1}{6}$.
Given that $0<a<b<1$.
8 M
b) A rectangular box open at the top is to have volume 32 cubic feet. Find the dimensions of the box requiring least material for its construction.
4.a) Calculate $\iint r^{3} d r d \theta$ over the area included between the circles $r=2 \sin \theta$ and $r=4 \sin \theta$.
b) Change the order of integration in $I=\int_{0}^{4 a} \int_{\frac{x^{2}}{4 a}}^{2 \sqrt{a x}} d y d x$ and hence evaluate.
5. a) Find the directional derivative of $\varphi=x^{2} y+4 x z^{2}$ at the point $(1,-2,1)$ in the direction of the vector $2 i-j-2 k$.
b) Use divergence theorem to evaluate $\iint_{s} \vec{F} \cdot \hat{n} d s$ where

$$
\begin{align*}
& \vec{F}=4 x i-2 y^{2} j+z^{2} k \text { and ' } \mathbf{S} \text { ' is the surface of the cylinder } \\
& x^{2}+y^{2}=4, Z=0 \text { and } Z=3
\end{align*}
$$

6. a) By the method of least squares find the equation of the straight line that best fits the following data.

x	1	2	3	4	5
Y	14	27	40	55	68

b) Define Beta and Gamma functions, then show that

$$
\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}
$$

