Code: CE1T1, ME1T1, CS1T1, IT1T1, EE1T1, EC1T1, AE1T1

I B. Tech - I Semester – Regular / Supplementary Examinations November 2017

ENGINEERING MATHEMATICS - I (Common for all Branches)

PART - A

Duration: 3 hours

Answer *all* the questions. All questions carry equal marks

11 x 2 = 22 M

1.

- a) Solve $(x^2 ay)dx = (ax y^2) dy$.
- b) State Newton's law of cooling.
- c) Express e^x as powers of x.
- d) State Rolle's theorem.
- e) Find the particular integral of $(D^2 1)y = e^{2x}$.
- f) Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} (x^{2} + y^{2}) dy dx$.
- g) Show that divr = 3
- h) Show that $curl(grad \varphi) = \overline{0}$.
- i) Using Green's theorem, find the area of the ellipse $x = a \cos \theta$, $y = b \sin \theta$, $0 \le \theta \le 2\pi$.
- j) Write the normal equations of a straight line y = ax + b.

Max. Marks: 70

k) Calculate
$$\Gamma\left(-\frac{3}{2}\right)$$
.

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \ge 16 = 48 \text{ M}$

2.a) Show that the family of con-focal conics $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$ is selforthogonal. Where λ is parameter. 8 M

b) Solve:
$$(D^2 - 2D + 1)y = xe^x \sin x$$
. 8 M

- 3.a) Using Lagrange's mean value theorem, prove that $\frac{b-a}{1+b^2} < \tan^{-1}b - \tan^{-1}a < \frac{b-a}{1+a^2}.$ Hence deduce that $\frac{\pi}{4} + \frac{3}{25} < \tan^{-1}\frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$. Given that 0 < a < b < 1. 8 M
 - b) A rectangular box open at the top is to have volume 32 cubic feet. Find the dimensions of the box requiring least material for its construction.
 8 M

- 4.a) Calculate $\iint r^3 dr d\theta$ over the area included between the circles $r = 2 \sin \theta$ and $r = 4 \sin \theta$. 8 M
 - b) Change the order of integration in $I = \int_{0}^{4a} \int_{\frac{x^2}{4a}}^{4a} dy dx$ and hence evaluate. 8 M
- 5. a) Find the directional derivative of $\varphi = x^2 y + 4xz^2$ at the point (1, -2, 1) in the direction of the vector 2i - j - 2k. 8 M
 - b) Use divergence theorem to evaluate $\iint_{s} \stackrel{\rightarrow}{F} \cdot \stackrel{\wedge}{n} ds$ where $\stackrel{\rightarrow}{F} = 4xi - 2y^{2}j + z^{2}k$ and 'S' is the surface of the cylinder $x^{2} + y^{2} = 4, Z = 0 and Z = 3$ 8 M
- 6. a) By the method of least squares find the equation of the straight line that best fits the following data.8 M

X	1	2	3	4	5
Y	14	27	40	55	68

b) Define Beta and Gamma functions, then show that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}.$ 8 M